Hopf bifurcation and multistability in a system of phase oscillators.
نویسندگان
چکیده
We study the phase reduction of two coupled van der Pol oscillators with asymmetric repulsive coupling under an external harmonic force. We show that the system of two phase oscillators undergoes a Hopf bifurcation and possesses multistability on a 2π-periodic phase plane. We describe the bifurcation mechanisms of formation of multistability in the phase-reduced system and show that the Andronov-Hopf bifurcation in the phase-reduced system is not an artifact of the reduction approach but, indeed, has its prototype in the nonreduced system. The bifurcational mechanisms presented in the paper enable one to describe synchronization effects in a wide class of interacting systems with repulsive coupling e.g., genetic oscillators.
منابع مشابه
Synchronization of two non-scalar-coupled limit-cycle oscillators
Being one of the fundamental phenomena in nonlinear science, synchronization of oscillations has permanently remained an object of intensive research. Development of many asymptotic methods and numerical simulations has allowed an understanding and explanation of various phenomena of self-synchronization. But even in the classical case of coupled van der Pol oscillators a full description of al...
متن کاملSynchronized States Observed in Coupled Four Oscillators
Systems of coupled oscillators are widely used as models for biological rhythmic oscillations such as human circadian rhythms[1, 2], finger movements, animal locomotion[3], swarms of fireflies that flash in synchrony, synchronous firing of cardiac pacemaker cells[5, 6], and so on. Using these coupled oscillator models, many investigators have studied the mechanism of generation of synchronous o...
متن کاملNormal forms of Hopf Singularities: Focus Values Along with some Applications in Physics
This paper aims to introduce the original ideas of normal form theory and bifurcation analysis and control of small amplitude limit cycles in a non-technical terms so that it would be comprehensible to wide ranges of Persian speaking engineers and physicists. The history of normal form goes back to more than one hundreds ago, that is to the original ideas coming from Henry Poincare. This tool p...
متن کاملClustering in globally coupled oscillators near a Hopf bifurcation: theory and experiments.
A theoretical analysis is presented to show the general occurrence of phase clusters in weakly, globally coupled oscillators close to a Hopf bifurcation. Through a reductive perturbation method, we derive the amplitude equation with a higher-order correction term valid near a Hopf bifurcation point. This amplitude equation allows us to calculate analytically the phase coupling function from giv...
متن کاملHopf bifurcation analysis of a diffusive predator-prey model with Monod-Haldane response
In this paper, we have studied the diffusive predator-prey model with Monod-Haldane functional response. The stability of the positive equilibrium and the existence of Hopf bifurcation are investigated by analyzing the distribution of eigenvalues without diffusion. We also study the spatially homogeneous and non-homogeneous periodic solutions through all parameters of the system which are spati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 88 3 شماره
صفحات -
تاریخ انتشار 2013